
TraceUpscaler: Upscaling Traces to Evaluate Systems at
High Load

Sultan Mahmud Sajal
sxs2561@psu.edu

The Pennsylvania State University

Timothy Zhu
tuz68@psu.edu

The Pennsylvania State University

Bhuvan Urgaonkar
bhuvan@cse.psu.edu

The Pennsylvania State University

Siddhartha Sen
sidsen@microsoft.com

Microsoft Research

Abstract
Trace replay is a common approach for evaluating systems by
rerunning historical traffic patterns, but it is not always pos-
sible to find suitable real-world traces at the desired level of
system load. Experimenting with higher traffic loads requires
upscaling a trace to artificially increase the load. Unfortu-
nately, most prior research has adopted ad-hoc approaches
for upscaling, and there has not been a systematic study of
how the upscaling approach impacts the results. One common
approach is to count the arrivals in a predefined time-interval
and multiply these counts by a factor, but this requires gen-
erating new requests/jobs according to some model (e.g., a
Poisson process), which may not be realistic. Another com-
mon approach is to divide all the timestamps in the trace by
an upscaling factor to squeeze the requests into a shorter time
period. However, this can distort temporal patterns within
the input trace. This paper evaluates the pros and cons of
existing trace upscaling techniques and introduces a new ap-
proach, TraceUpscaler, that avoids the drawbacks of existing
methods. The key idea behind TraceUpscaler is to decouple
the arrival timestamps from the request parameters/data and
upscale just the arrival timestamps in a way that preserves
temporal patterns within the input trace. Our work applies to
open-loop traffic where requests have arrival timestamps that
aren’t dependent on previous request completions. We evalu-
ate TraceUpscaler under multiple experimental settings using
both real-world and synthetic traces. Through our study, we
identify the trace characteristics that affect the quality of up-
scaling in existing approaches and show how TraceUpscaler

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629581

avoids these pitfalls. We also present a case study demon-
strating how inaccurate trace upscaling can lead to incorrect
conclusions about a system’s ability to handle high load.

CCS Concepts: • General and reference ! Experimenta-
tion; Performance; Measurement.

Keywords: Analysis, Testing and Verification of Systems;
Cloud Computing; Measurement, Analysis, Workloads

ACM Reference Format:
Sultan Mahmud Sajal, Timothy Zhu, Bhuvan Urgaonkar, and Sid-
dhartha Sen. 2024. TraceUpscaler: Upscaling Traces to Evaluate
Systems at High Load. In Nineteenth European Conference on Com-
puter Systems (EuroSys ’24), April 22–25, 2024, Athens, Greece.
ACM, New York, NY, USA, 20 pages. https://doi.org/10.1145/

3627703.3629581

1 Introduction
Computer systems researchers and practitioners often need to
test and experiment with their systems under realistic traffic
conditions. There are two broad approaches for generating
workload traffic. First, closed-loop traffic sends requests (aka
jobs) to the system after previous requests have completed.
This is useful for understanding the maximum throughput
characteristics achievable by the system (i.e., system capacity)
since completing requests faster will cause more requests to
be sent to the system. Second, open-loop traffic represents
requests generated from external entities (e.g., users) over
time and is most applicable for user-facing systems (e.g.,
web servers). In these cases, throughput (i.e., completion
rate) is equal to the arrival rate, assuming a stable system,
so the primary performance characteristic is latency, which
can significantly be affected by the arrival time and request
characteristics (e.g., size, type). Significant research effort has
been made to design systems to optimize latency, particularly
the tail latency characteristics [2, 26, 57, 63, 79, 104]. Our
work focuses on how to evaluate these open-loop scenarios to
accurately portray these latency characteristics. Our research
shows that failing to properly replay traffic patterns could
significantly skew results by multiple orders of magnitude,
leading to incorrect conclusions about a system’s ability to
handle various traffic conditions.

https://doi.org/10.1145/3627703.3629581
https://doi.org/10.1145/3627703.3629581
https://doi.org/10.1145/3627703.3629581

EuroSys ’24, April 22–25, 2024, Athens, Greece Sajal et al.

Original
Trace

Publicly
Available

Trace

Traffic

Trace Collected
from Logging

Node-1

Node-N

Load
Balancer

The System

Log-1

Log-N

Figure 1. Typically, publicly available traces from production
environments are collected from only a subset of the nodes.

One gold standard for performance evaluation is to uti-
lize traces of production traffic to represent real-world traffic
patterns. Throughout this paper, we use the term trace to
represent a list of requests/jobs, where each request is accom-
panied by an arrival timestamp and other relevant request
parameters. Generating experimental traffic according to a
trace is known as trace replay, and it involves sending the re-
quests based on the time intervals specified by the trace. Trace
replay is a straightforward and simple approach for generating
the traffic to a system in a realistic and reproducible manner,
but it relies upon the experimenter to have accurate traces
for their specific needs. Companies have made some traces
publicly available [25, 46, 53, 100, 106, 108], but they are
often collected from a subset of nodes in the system (Fig. 1).
Hence, they do not represent the whole traffic experienced
by the system (i.e., only a fraction of the load). As a result,
the system load from a trace may not be high enough if the
evaluation platform is larger than the portion of the system
recorded by the trace.

Thus, it is often necessary to adjust the load to appropriately
fit the size of the evaluation platform. We refer to modifying
the load of a trace as trace scaling, and experimenters often
invoke ad-hoc mechanisms that they tend to describe briefly
and vaguely or not at all. Recently, TraceSplitter [91] has
demonstrated that these common approaches can be inaccu-
rate, but it only considers downscaling, where the desired
load is lower than the load of the trace. The focus of this
paper is on upscaling traces, where the desired load is higher
than the load of the trace. While downscaling involves remov-
ing known, existing requests from a trace, upscaling requires
adding new requests to increase the load, which necessitates
fabricating requests that are representative of the input trace.

There are three predominant use cases for upscaling traces.
First, one would need to upscale traces when the evaluation
platform is larger than (the subset of) the production system
where a trace is collected. Second, practitioners need to test
hypothetical scenarios where the load has grown. For exam-
ple, if the load doubles in the next year, is the system able to
handle the load, or do practitioners need to address some scal-
ability bugs, or do they need to take a step back and develop
a more scalable design? One could answer these questions by
capturing and upscaling a trace to test this hypothetical sce-
nario. Third, it is helpful to characterize the performance of a

system by showing how latency changes as a function of load.
Latency vs. load graphs are traditionally generated by syn-
thesizing traces at various loads (e.g., with a Poisson arrival
process) and plotting the resulting latency. With upscaling,
one could take a production trace and scale it to various load
levels to have a more realistic characterization of the system
performance, with all the bursty traffic patterns and request
peculiarities of the real-world trace.
Upscaling Approaches: In practice, there are two common
approaches to upscaling. First, one could divide all the times-
tamps by an upscaling factor to squeeze the requests within a
shorter timespan, thus increasing the load. We call this Times-
pan Scaling (Tspan). Our work will show how this can distort
temporal patterns within the trace, which would misrepresent
performance effects. Second, one could count the number of
requests within time intervals (e.g., every 60 sec [39, 77] or
every 1 sec [3, 15]) and then multiply these numbers by a
scaling factor. In effect, this tracks and upscales the average
rate of requests over time, so we call this AverageRateScaling.
Importantly, this approach involves generating requests at a
higher rate, which requires some model for generating the
requests. One of the more common approaches would be to
use Poisson process to generate timestamps. However, it is
easy to generate unrealistic traces if the time interval is too
large or too small, and it is hard to gauge an appropriate time
interval when upscaling a trace since there is no indication of
the upscaling being realistic or not. Another choice users can
make is to sample from an empirical distribution of request
types/sizes/parameters. This can potentially lead to distorted
caching effects, depending on how the request parameters are
selected. The Repeat approach, which simply repeats requests
at the same timestamps from the Input trace, also suffers from
distorted caching effects due to repeating the requests.

TraceUpscaler is our new upscaling approach that main-
tains temporal patterns in the Input trace without altering any
caching patterns. Fig. 2 illustrates our approach compared
to other common approaches. To avoid altering caching be-
haviors, TraceUpscaler generates upscaled requests using the
same request parameters from the Input trace in the same
order. This is the same as the Tspan approach, except instead
of dividing the timestamps by a scaling factor, TraceUpscaler
uses the same arrival timestamp for a string of consecutive
requests in the upscaled trace. That is, the first timestamp in
the Input trace is used for multiple requests in the upscaled
trace, and the second timestamp in the Input trace is used for
the next set of requests in the upscaled trace. For example,
Fig. 2 illustrates how all the arrivals in the trace generated
by TraceUpscaler match the arrival times in the Input trace.
This avoids distorting temporal patterns since micro-bursts
and load variations in the Input trace are amplified at the
same time in the upscaled trace. To the best of our knowl-
edge, we are the first to propose this upscaling strategy. The
key idea behind our novel approach is to decouple the arrival
timestamps from the request data (i.e., request parameters)

TraceUpscaler EuroSys ’24, April 22–25, 2024, Athens, Greece

Time

Input
1 2 3 4 5 6 7 80

R1 R2 R3 R4 R5 R6

Tspan
R1 R2 R3 R4 R5 R6

AverageRate-
Scaling 1 2 3 4 5 6 7 80

R1R2 R3 R4 R5 R6R1R1R3 R4 R5R6

Repeat

TraceUpscaler

1 2 3 4 5 6 7 80

R1 R2 R3 R4 R5 R6
R1 R2 R3 R4 R5 R6

1 2 3 4 5 6 7 80

R1 R3
R2 R4

R5
R6

1 2 3 4 5 6 7 80

Figure 2. Illustration of upscaling techniques for scaling factor, f = 2. The requests are denoted by R1, R2, ..., R6, and each
request is also marked with a unique color. Tspan condenses requests into a shorter timespan, thereby increasing load at the
cost of distorting temporal patterns. One side effect is the duration for Tspan (and TraceUpscaler) becomes shorter than that of
the Input trace as more requests are needed for the higher load. AverageRateScaling generates requests at a higher arrival rate
with requests sampled from the Input trace. This can possibly distort the temporal pattern and relative ordering of the requests
compared to the Input trace. TraceUpscaler repeats timestamps similar to Repeat to maintain temporal patterns, but uses requests
from the Input trace in the same order to preserve caching effects.

and repeatedly use the same arrival timestamps when upscal-
ing. The insight behind this is twofold: (i) adhering to arrival
timestamps allows us to preserve important temporal patterns
from the Input trace, and (ii) preserving the relative ordering
of the requests allows us to maintain the caching effects from
the Input trace. Our evaluation shows that this simple and ele-
gant approach effectively overcomes the limitations of prior
approaches.
Contributions:
• We identify pitfalls with common upscaling approaches

used in practice via evaluations with both production and
synthetic traces (Sec. 5). This includes a case study (Sec. 5.5)
where current upscaling techniques inaccurately portray an
overload both in terms of its duration and magnitude, lead-
ing to incorrect conclusions about the system’s ability to
handle this overload.

• We develop TraceUpscaler, a novel upscaling approach
that realistically maintains temporal patterns and caching
effects from the Input trace, overcoming the limitations of
existing approaches.

• TraceUpscaler is available as an open-source tool at https:
//github.com/smsajal/TraceUpscaler.

2 Background and Related Work
While scaling traces to achieve a desired load is a common
practice in systems research, many works do not describe
precisely how they perform their scaling [11, 81, 102, 103,

113, 122]. This makes it hard to reproduce results and ver-
ify the soundness of the trace scaling. For the works that do
describe their scaling methodology, we can classify the ap-
proaches into three broad categories: (i) Model-Based Scaling,
(ii) Timespan Scaling, and (iii) Node Removal.

2.1 Model-Based Scaling (AverageRateScaling)
One common approach for scaling traces is to generate re-
quest arrival times and parameters based on some model
involving one or more “important” workload characteristics.
For example, request parameters are often sampled from em-
pirical distributions and arrival times are often based on using
well-known arrival processes (e.g., Poisson process) with the
arrival rates configured based on averages from the original
trace. However, generating accurate models is difficult and
requires significant time and effort [110]. Lublin et al. [70]
have explored in detail the cases where models are preferred
and important factors for developing a realistic model. There
have been efforts in more accurate model-based upscaling,
which include using time-series prediction techniques for gen-
erating synthetic arrival times [18, 37, 66, 67, 85, 96] and
fitting arrival times into distributions so that practitioners
can sample from them [55, 60]. While fitting arrival times
into empirical distributions to generate statistically similar
arrivals is a good choice to capture temporal patterns, it can
still end up distorting the cache access patterns because of
reusing existing requests to generate more requests (pitfall

https://github.com/smsajal/TraceUpscaler
https://github.com/smsajal/TraceUpscaler

EuroSys ’24, April 22–25, 2024, Athens, Greece Sajal et al.

0

250

0

250

0

250

0 20 40 60 80 100
0

250

Time (6ecRnd)

5
eT
ue
st
s/
6e
cR
nd

2riginaO
Average5ate6caOing-10s

Average5ate6caOing-1s
Average5ate6caOing-100s

(a) Effects of different time intervals in preserving short-term bursts
in synthetic traces upscaled by AverageRateScaling.

0 20 40 60 80 100

TimH (6HcRnd)

0

50

100

C
ac
hH
 H
it
5
at
H
(%

)

2riginaO
AvHragH5atH6caOing-10s

AvHragH5atH6caOing-1s
AvHragH5atH6caOing-100s

(b) Difference in cache hit rate with different time intervals in syn-
thetic traces upscaled by AverageRateScaling.
Figure 3. Effect of time interval on the quality of upscaling by
AverageRateScaling. This example uses an upscaling factor
f = 2 where the Input trace to AverageRateScaling is a fraction
(1/2) of the Original trace.

shown in Fig. 3b). Prior research has also focused on differ-
ent trace characteristics other than arrival times [71, 89, 110].
The Google trace [46, 86, 106, 111] has been used to generate
models [19–21, 59, 76, 84, 93–95, 99, 120, 121] that focus
on capturing key characteristics from the trace. Similarly,
there are multiple models [30, 34] generated from the Azure
trace [25] and other models [10, 17, 29, 42, 49, 87] generated
from various other production traces [6, 27, 69]. However,
experimenters trying to replay a trace typically lack both the
time and expertise to generate such models just to upscale a
trace for an experiment. In most cases, upscaling is orthog-
onal to the actual problem being solved, which leaves little
room for spending effort on modeling trace characteristics
to accurately scale them. As a result, inappropriate models
and parameters are often chosen for simplicity, which can
lead to non-representative trace scaling and wrong conclu-
sions about system performance. By contrast, TraceUpscaler
reuses request and arrival data from the trace itself, so it is

not bound to any particular model and does not suffer from
any modeling assumptions.
AverageRateScaling: In this paper, we will focus on the
following model-based scaling methodology: (i) divide the
original trace into fixed time intervals, (ii) calculate the av-
erage arrival rate for each time interval, (iii) scale the rates
by the scaling factor, and (iv) generate a new upscaled trace
where the timestamps are randomly generated from a Pois-
son process with the upscaled arrival rates and request pa-
rameters are randomly sampled from the empirical distribu-
tions for each time interval. We label this approach as Av-
erageRateScaling, and this is a popular approach to upscale
traces [5, 15, 28, 56, 75, 117].

There are three important aspects of this approach. First,
we use a time-varying Poisson process where each time inter-
val has a Poisson process. A Poisson process is a common,
well-known arrival process that has a single arrival rate pa-
rameter that can easily be scaled, but it is not the best at
representing bursty traffic. Making it time-varying helps in
capturing some of the burstiness, but it is not perfect. Fitting
traces to more complex models of arrival patterns is possible,
but experimenters prefer simple upscaling techniques to avoid
skewing results from modeling peculiarities.

Second, we empirically sample requests from each time
interval from the Input trace to represent how request param-
eters correlate with each other over time. We have not ex-
perimented with using a different time interval for empirical
request parameter distributions as that introduces an addi-
tional parameter to tune. We acknowledge that our approach
is rather simple, and one can construct a more sophisticated
model that can work better than this, but it would require
more time, expertise, and effort from the experimenter. We
hope that prior works have put sufficient thought into upscal-
ing approaches, but the side effects of upscaling are nuanced,
so a goal of this work is to demonstrate potential pitfalls
from simple approaches that researchers commonly apply in
practice.

Third, the choice of the time interval can cause the upscaled
trace to not be representative of the original trace. If the time
interval is too long, short-term bursts are eliminated by the
averaging as shown in Fig. 3a. On the other hand, if the time
interval is too short, requests from the empirical distribution
will be reused, leading to higher hit rates than the Original
trace as shown in Fig. 3b.

For a trace, the smallest time-interval possible would be
the granularity of the timestamp recorded in the trace (mil-
liseconds or seconds for typical web workloads). This would
basically repeat all the requests at their exact timestamps, as
many as needed to reach the desired load in the trace. We call
this Repeat, and our evaluation (Sec. 5) shows that although
it performs reasonably well in stateless systems, it distorts
caching effects in stateful systems. Ultimately, there is no
“right” time interval, and it is non-trivial to figure out what is
appropriate for a given trace.

TraceUpscaler EuroSys ’24, April 22–25, 2024, Athens, Greece

0 10 20 30 40 50 60

Time(6ecRnd)

0

100

200

300

400

5
eT
ue
st
s/
6e
cR
nd

6ystem
CaSacity

TsSan 2riginaO InSut

Figure 4. Impact of Tspan upscaling on temporal patterns in
a trace. This example uses an Input trace derived from half of
the Original trace. Tspan increases the load of the Input trace
by a factor of 2 to match the load of the Original trace, but the
overload duration is shorter compared to the Original trace.

2.2 Timespan Scaling (Tspan)
Another popular trace scaling approach is to scale the inter-
arrival times between requests. That is, all the arrival times are
divided by the scaling factor to shorten the timespan between
requests in the trace [14, 52, 98, 107, 107, 112, 114], and
we call this approach timespan scaling. Timespan scaling
(Tspan) is simple and easy to understand, but it can distort
the temporal patterns in the trace, which skews performance
in unrealistic ways. For example, temporary overload periods
in the input trace would be shortened in the upscaled trace,
as shown in Fig. 4; this would subject the system to a shorter
period of overload compared to the input trace. This can
lead to misleadingly optimistic conclusions (see case study in
Sec. 5.5), which can result in incorrect system management
or design decisions

2.3 Node Removal
Lastly, an orthogonal approach to increasing load in the sys-
tem is to instead remove nodes/machines from the system
without scaling the trace [110, 119]. However, one of the use
cases of upscaling is to evaluate higher loads where there may
be scalability bottlenecks, and evaluating with a smaller clus-
ter will not demonstrate the desired effect. Additionally, the
granularity of increasing load is limited by the non-fractional
nature of removing nodes from the system. Furthermore, prac-
titioners also need to consider the constraints, fragmentation,
and heterogeneity present in the nodes/machines for a proper
node removal strategy [110], which adds complexity to the
systems evaluation process.

2.4 Trace Downscaling
Downscaling traces to reduce load is a common practice
among practitioners where Sampling [16, 23, 68, 72, 82, 83,
101], AverageRateScaling [3, 39, 43, 109, 118], and Tspan [13,
38, 78, 109] have been used to generated downscaled traces.
A recent work, TraceSplitter [91], has explored the potential

pitfalls associated with these approaches and proposed a novel
downscaling technique. However, upscaling is a more diffi-
cult problem than downscaling because downscaling involves
removing requests from existing traces, whereas upscaling in-
volves introducing new requests into the trace. This is similar
to how image upscaling is harder than image downscaling due
to the addition/removal of data. Creating new requests while
preserving the realism of the original trace is difficult and
requires caution and in-depth knowledge in selecting times-
tamps and request characteristics appropriately, which is the
goal of this work.

2.5 Other Works
Designing realistic experiments for performance evaluation
of real-world computer systems has consistently garnered
interest among practitioners [50, 61, 65, 90, 92, 110]. Prior
works have looked at understanding computer benchmarking
practices [47, 61], exploring common flaws of reporting data
in experiments specific to performance evaluation in paral-
lel computing and High Performance Computing (HPC) sys-
tems [7, 31, 33, 48, 51, 70], providing in-depth analysis of per-
formance variability in computer systems [73], and generating
synthetic testbeds for reproducible experiments [80, 116]. Re-
cently, DITTO [64] has proposed an automated framework
to clone cloud applications, capturing important application
characteristics (e.g., kernel operations, application logic be-
havior, high-level performance metrics, and I/O and network
activities) without exposing original application logic. While
DITTO focuses on realistic cloning of an application, we fo-
cus on the realistic scaling of a trace that is to be replayed in
the application.

There have been prior efforts in the context of storage
traces, which include generating models from storage work-
loads [12, 40, 97, 105, 123], analyzing the challenges and
design of a time accurate storage benchmark [4], developing
accurate trace replay tools [1, 44, 54, 105, 115], facilitating
reuse of traces collected from one type of storage to another
storage system [74], and modifying traces collected from
older hardware to newer hardware [22, 36, 52, 62, 74, 107,
114, 124]. These works predominantly focus on changing
the request characteristics to suit various storage hardware in
closed-loop workloads, whereas our work focuses on scaling
the load and arrival patterns in open-loop workloads.

3 Design and Implementation
3.1 Goals and Scope
The goal of TraceUpscaler is to realistically increase the
load of an existing trace collected from a real-world system.
TraceUpscaler generates an upscaled trace based on an input
trace and upscaling factor, f (1 < f < •)1, where f is the ratio
between the desired load and the current load in the trace.

1Generating scaled trace with f < 1 is downscaling, which is out of scope of
TraceUpscaler.

EuroSys ’24, April 22–25, 2024, Athens, Greece Sajal et al.

This is significantly affected by trace arrival patterns (i.e.,
arrival times) as well as how requests are generated in the
upscaled trace.

The scope of TraceUpscaler is open-loop [45] latency-
sensitive applications, which cover a broad category of cloud
systems. End users submit requests or jobs to the system
and expect a response within a reasonable amount of time.
Our work aims to provide a realistic upscaling approach that
captures the trace characteristics impacting latency, both in
the mean and tail percentiles (e.g., 99th percentile). Latency
is an important performance metric in these systems and can
capture the aggregate impact of many effects such as caching,
whether the system is overloaded, etc.
Where TraceUpscaler works: Our work focuses solely on
increasing the load (i.e., arrival rate) of a trace to evaluate
what-if scenarios where load is increased. TraceUpscaler is
designed to preserve the input trace characteristics, so that
the upscaled trace is ‘similar’ to the input trace but at a higher
load. To preserve caching behaviors, our approach utilizes the
exact same requests from the input trace in the same order.
To preserve temporal access patterns, our approach uses the
same timestamps from the input trace as well, but replicates
them to increase load. We assume that the input trace quality
is representative of what the user wants to evaluate in their
experiments. In that regard, TraceUpscaler does not make any
specific decisions for scenarios such as handling missing data,
abnormalities in trace, etc. and leaves those to the discretion
of the user.

Our evaluation demonstrates how TraceUpscaler can use
a trace collected from a subset of nodes to generate an up-
scaled trace that exhibits similar latency characteristics to the
Original trace sent to the cluster. Practitioners can also use
TraceUpscaler to generate traffic to evaluate scenarios such
as how faster machines would react under higher load, how
an increased number of nodes can handle a higher load, etc.
Where TraceUpscaler does not work: TraceUpscaler is not
designed to forecast any changes in trace characteristics that
occur due to the increased traffic. For example, in some cases
(e.g., social networks), the increased traffic might be caused
by a hot event, translating to more users requesting the same
data, leading to an increase in cache hit rate for those requests.
Conversely, increased traffic can also potentially increase the
working set of accessed requests, leading to a decrease in
cache hit rate compared to the current trace. Our approach
only focuses on preserving the caching effect, and does not
consider the possible caching behavior changes that can occur
with increased traffic. Hence, TraceUpscaler does not work
when the traffic at higher load is expected to differ signifi-
cantly from the input trace, and users need to model these
differences for their particular workload.

TraceUpscaler may not work at very high upscaling factors.
Our evaluation includes experiments with scaling factors up to
5, and we have not tested significantly higher scaling factors.

When scaling factors are too high, the specific micro-bursts
within the input trace will be magnified. Upscaling is also
limited by the data available in the input trace, so there may
not be enough requests to achieve the desired upscaling factor
and upscaled trace duration.

3.2 Key Ideas
The first key idea is to frame the trace upscaling problem
in terms of a trace reconstruction problem. TraceUpscaler
constructs an upscaled trace by reusing the same timestamps
and requests from the Input trace. This way, we maintain
realism by not introducing any synthetic data generated by a
model.

The second key idea is to separate the arrival timestamp
generation from the request parameter generation. For re-
quests in the upscaled trace, we use the existing request param-
eters from the Input trace in the same order to avoid distorting
caching behaviors. Caching systems are predominantly af-
fected by the order in which requests arrive rather than the
exact time that they arrive. Our approach thus preserves the
request ordering from the Input trace, while allowing load to
be increased through the arrival timestamp generation.

3.3 Our Proposed Method: TraceUpscaler
Our proposed upscaling approach, TraceUpscaler, generates
an upscaled trace where the request parameters exactly match
the request parameters in the Input trace in the same order.
Only the request arrival timestamps differ where the first
timestamp in the Input trace is used across f consecutive re-
quests in the upscaled trace and the second timestamp in the
Input trace is used for the following f consecutive requests.
Thus, we preserve the same request ordering from the Input
trace2 along with its caching characteristics while increasing
the load by having f times the number of requests arriving
within a given time period. Using the same timestamp for
multiple upscaled requests allows us to maintain the temporal
patterns from the Input trace. For example, bursts within the
Input trace would appear as bursts in the upscaled trace at the
same time and for the same duration. Fig. 2 shows an example
of how we reconstruct an upscaled trace with an upscaling
factor f = 2. Though simple, we find through our evaluation
that this approach effectively overcomes some of the limita-
tions of prior approaches. When dealing with non-integral
upscaling factors (i.e., f is not an integer), TraceUpscaler
uses a timestamp for b f c + 1 consecutive requests with prob-
ability (f�bfc) or b f c consecutive requests otherwise. This
results in an upscaling factor of f on average throughout the
trace. We conduct experiments in Sec. 5.3 to demonstrate that

2For the requests in the upscaled trace that have the same arrival timestamp,
the ordering matches the Input trace so that the trace replayer will first pick
the earlier request from the Input trace. As with any concurrent system,
there’s a chance for requests to occur out of order, but our trace ordering
biases the requests to follow the order in the Input trace. We discuss the
sensitivity of this in Sec. 6.

TraceUpscaler EuroSys ’24, April 22–25, 2024, Athens, Greece

Traffic

Trace Collected
from Logs

Stati
stic

s C
olle

cted

Evaluation Methodology

Node-1

Node-N

TraceUpscaler

Publicly
Available

Trace

Upscaled
Trace

Original
Trace

Compare

Load
Balancer

Statistics Collected

The System
Text

Latency Statistics Latency Statistics

Figure 5. Evaluation methodology for comparing upscaling techniques. We replay an Original trace to collect (i) latency statistics,
and (ii) an Input trace from a subset of nodes in the system. The Input trace represents what a company may publicly release, and
we upscale it to match the load of the Original trace. We then replay the upscaled trace and compare its latency statistics with the
latency statistics from running the Original trace.

TraceUpscaler performs well when dealing with non-integral
scaling.

To develop our approach, we take inspiration from Tspan
(for using only the requests from the Input trace) and Repeat
(for reusing only the timestamps from the Input trace). Tspan
and TraceUpscaler use the same requests in the same order,
but the former’s approach to upscaling the timestamps results
in skewed temporal patterns as described in Sec. 2.2. Repeat
uses the same timestamps as TraceUpscaler, but it also re-
peats the requests, which impacts caching systems since the
repeated requests are easily cachable. By separately recon-
structing timestamps and request data, TraceUpscaler pro-
duces upscaled traces that preserve the temporal and caching
behaviors of the input trace, combining the best aspects of
Tspan and Repeat. Our evaluation in Sec. 5 demonstrates that
TraceUpscaler is the best upscaling approach in preserving
latency characteristics.

One important caveat of using TraceUpscaler (and Tspan)
is that they require a longer input trace duration than the
output upscaled trace. For example, producing a 5-minute
upscaled trace with 2⇥ load would require a 10 minute or
longer input trace. Since production systems can often collect
traces over a long period of time, often multiple days [25,
46, 86, 106, 111], we do not expect this limitation to create a
serious barrier against using TraceUpscaler in practice.

4 Evaluation Methodology
One of the most challenging aspects of evaluating trace up-
scaling is determining whether the upscaling was done realis-
tically. Fig. 5 shows the design of our evaluation methodology.
To evaluate realism, we need some ground truth trace that we
can compare upscaled traces against, and as Fig. 5 shows, we

use an Original trace as the ground truth. We replay this trace
in the system and collect log and latency statistics from the
system. From the logs, we identify the traffic experienced by
each node in the system. We then take the traffic experienced
by a subset of the nodes and upscale them with an upscaling
factor (f) to match the load in the Original trace. We then
replay the upscaled trace in the system and record the latency
statistics from the system as before. Finally, we compare the
latencies from the Original and upscaled traces to determine
how closely they match. We determine the realism of upscal-
ing by seeing how closely the latency from an upscaled trace
matches that from the Original trace. A good upscaling tech-
nique should mimic the performance of the Original trace
even though the Input trace to the upscaler is only a subset of
the Original trace.

4.1 Metrics
Our main performance metric is latency as it is of primary
interest in the context of latency-sensitive open-loop appli-
cations. We compare the latency distributions between the
Original and upscaled traces to see which upscaling approach
matches the Original trace behavior most closely. For our
system with caching, we also look at the Cache Hit Rate as a
means of explaining the latency characteristics. All metrics
reported are averages of five runs (unless otherwise specified)
and error bands demonstrate standard errors. Most of our ex-
periments use a 2⇥ scaling factor by default, and we explore
other scaling factors in Sec. 5.3 and Sec. 5.4.

4.2 Comparison Approaches
This section describes the comparison upscaling approaches,
which are depicted in Fig. 2.

EuroSys ’24, April 22–25, 2024, Athens, Greece Sajal et al.

Repeat: In this approach, we repeat all requests and arrival
timestamps by the upscaling factor. Possible variations of this
approach include adding small offsets (random, deterministic,
etc.) to the timestamps. From our initial evaluations, we have
found that this does not substantially impact the performance
of Repeat. Hence, we decided to focus on the simplest version
with repeated timestamps/requests.
AverageRateScaling: This upscaling technique is described
in Sec. 2.1, and we select a time interval of 10s to not be
too large or too small. There could be a better time interval,
but analyzing the input trace to fine tune the time interval is
beyond the scope of this paper.
Tspan: In this approach, we divide all arrival timestamps by
the upscaling factor, as described in Sec. 2.2.
Fold: In this approach, we split the whole trace into f con-
secutive parts, and then we overlap these parts to create an
upscaled trace. For example, we can upscale by a factor of
2 by overlapping the first half of the trace with the second
half of the trace. This intuitive method seems promising in
theory, but suffers from averaging out micro-bursts in the
trace because the micro-bursts within each part do not overlap
exactly, and we demonstrate this in Sec. 5.1.1 and Sec. 5.5.
This may be desirable if one wanted to experiment with the
effects of overlapping trace segments, but our goal is to mimic
the behavior seen in the Input trace exactly as-is.

4.3 Applications and Cluster Hardware
We conduct our evaluations across two different web appli-
cation systems — one stateful (DeathStarBench) and one
stateless (MediaWiki) — as representatives of real-world ap-
plications. These are run on the nodes (i.e., VMs) in Fig. 5.
We develop a simple trace replayer as the client application
that generates web requests to the applications and measures
performance statistics. Both the applications and client pro-
gram are deployed in Azure using Standard Ds v5 series VMs
(Tbl. 1) running Ubuntu 18.04.

VM Size vCPU Memory (GiB)
Standard_D2s_v5 2 8
Standard_D4s_v5 4 16
Standard_D8s_v5 8 32

Table 1. VM types used in experiments.
DeathStarBench: We use the social network application from
DeathStarBench [35], a modern distributed end-to-end bench-
mark with 30 microservices (e.g., application logic, web
servers, databases). We use the read_home_timeline work-
load, where the homepage is populated by 64 posts from a
user’s social network timeline. We populate the social net-
work with the Reed98 [88] dataset, which creates a total of
962 users in the system, and we insert 250 random posts per
user, creating a total of 240,500 posts in the system. We add
caching support through a lightweight HTTP reverse proxy
cache, Varnish [41], which is placed in front of the whole

DeathStarBench application. We use this setup as an example
of a stateful application in our evaluation.

For DeathStarBench, we use two D4s nodes for the major-
ity of the experiments where we upscale one of the node’s
traffic by a factor of 2. We balance the load between the two
nodes using an Nginx load balancer employing the Weighted
Round-Robin load balancing policy. For the Non-Integral
Scaling experiments (Sec. 5.3) and Extreme Scaling experi-
ments (Sec. 5.4), we experiment with other upscaling factors
besides 2 by adjusting the weights to send different propor-
tions of traffic (e.g., 2:1 ratio) to the nodes. For example, the
trace collected from the node receiving 2/3 of the requests
is used for the 1.5⇥ upscaling experiment, while the trace
collected from the node receiving 1/3 of the requests is used
for the 3⇥ upscaling experiment. Since these nodes receive
different proportions of traffic, we naturally vary the node size
using combinations of D8s, D4s, and D2s VM types. Across
the experiments, the DeathStarBench setup experienced a
peak rate of 352 requests/second with an average between
116.8-172.75 requests/second. Each request accesses 64 posts
where each post contains 256+ characters.
MediaWiki: We deploy MediaWiki [8], which is a multi-tier
web application used to run Wikipedia. Our workload targets
the stateless web application tier. Each request accesses a
webpage with the response being the webpage content.

For MediaWiki, we use 16 application nodes, each being
deployed in D4s VM types. We balance the load between
these nodes using an Nginx load balancer employing the Least
Connections load balancing policy. To avoid bottlenecks in
the database layer, we create 3 database instances, each being
deployed in a D8s VM type. Each database hosts the data for
5-6 MediaWiki nodes, and we use a read-only workload, so
we do not synchronize the databases. In our experiments, the
complete MediaWiki setup experienced a peak arrival rate of
1397 requests/second with an average 383 requests/second.
Trace Replayer: Our trace replayer is responsible for gen-
erating the traffic to the applications. It is implemented as
a multi-threaded application written in Java to send HTTP
requests according to the trace supplied to it. The client appli-
cation is highly configurable to mimic real-world multi-client
traffic in accordance to the trace supplied to it. The client does
not require many resources and is deployed on one D2s VM.
It is not a bottleneck at the scale of our system (2-16 nodes).

4.4 Traces
Our evaluation uses traces collected from a real-world produc-
tion system (Microsoft OneRF) and synthetically generated
traces. We use arrival timestamps from the Microsoft OneRF
traces to demonstrate how real-world arrival patterns are im-
pacted by TraceUpscaler and current upscaling approaches.
The synthetic traces help us explain the reasons behind the
shortcomings of current approaches.

TraceUpscaler EuroSys ’24, April 22–25, 2024, Athens, Greece

Microsoft OneRF traces: The Microsoft OneRF traces [9]
were collected from a datacenter on the US East Coast in Feb-
ruary 2018. OneRF is a common webpage rendering frame-
work used to serve a wide-range of Microsoft’s storefront
properties including news (msn.com) and online retail soft-
ware stores (microsoft.com, xbox.com). This production trace
collects high-level web requests from users arriving at OneRF,
which are served by more than 20 different backend systems,
such as product catalogues, recommender systems, user en-
titlement systems, etc. The trace contains the arrival time of
requests at millisecond granularity.

To create the Original trace (Fig. 5), we use arrival times-
tamps from the Microsoft OneRF trace with request parame-
ters from the benchmarks/applications as described in Sec. 4.3
since the OneRF trace does not have request parameter data
relevant to our evaluation applications (e.g., no request size
information). We then run the Original trace in each applica-
tion and collect traces from a subset of nodes to represent the
Input trace. Each upscaling approach uses only the subset of
data in the Input trace to generate an upscaled trace, and we
compare the performance when running the upscaled trace
and Original trace on the same system.

In our experiments, we pick 15 minute traces from the
different backends that have a suitable load for our cluster
(i.e., Original trace load is neither too high nor too low).
Since Tspan and TraceUpscaler require a higher number of
input requests to generate an upscaled trace, the upscaled
traces from these policies are much shorter in duration than
the Input trace. Thus to evaluate all policies for the same
duration, we run each of the upscaled traces for 5 minutes.
These durations are too short to evaluate long-term caching
effects, and we only evaluate short-term (minutes) caching
effects where Repeat and AverageRateScaling fail.
Synthetic traces: We synthesize bursty and non-bursty ar-
rival patterns to isolate trace characteristics that impact the
quality of the upscaled traces. We generate the arrival times
in the trace by using a Markov Modulated Poisson Process
(MMPP) [32], which randomly switches between multiple
Poisson Processes. By controlling the transitions between
the Poisson processes, we can create bursty and non-bursty
traces, which serve the purpose of our investigation. The re-
quest parameters are randomly generated for each evaluation
application as described in Sec. 4.3.

5 Experimental Results
5.1 Results using Arrival Times from Production Traces
5.1.1 Results from Stateful Setup. Fig. 6 shows results
from experiments in the stateful DeathStarBench setup. We
create 3 different traces using arrival timestamps from the Mi-
crosoft OneRF trace. Across all three cases, TraceUpscaler is
the closest to Original (ground truth), so it is the most accurate
trace upscaling approach in representing latency character-
istics. Repeat performs poorly since repeated requests can

2ULgLnaO
7UaFeUSsFaOeU
5eSeat
AveUage5ateSFaOLng
7sSan
)ROd

10−3 10−2 10−1

LatenFy(SeFRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(a) Microsoft OneRF Trace: Case 1

2ULgLnaO
7UaFeUSsFaOeU
5eSeat
AveUage5ateSFaOLng
7sSan
)ROd

10−3 10−2 10−1

LatenFy(SeFRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(b) Microsoft OneRF Trace: Case 2

2ULgLnaO
7UaFeUSsFaOeU
5eSeat
AveUage5ateSFaOLng
7sSan
)ROd

10−3 10−2 10−1 100

LatenFy(SeFRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(c) Microsoft OneRF Trace: Case 3
Figure 6. Comparison of different upscaling techniques in the
stateful system (DeathStarBench system with an added fron-
tend cache — details in Sec. 5.1.1), using traces with arrival
timestamps from the Microsoft OneRF trace. The closer the
latency for an upscaling technique is to Original, the better it
is in realistic upscaling.

directly return data from the cache, hence bypassing the per-
formance impacts experienced by the Original traffic from
generating the dynamic webpage content. AverageRateScal-
ing performs poorly since short term bursts are smoothed out
when computing the average rates. Furthermore, requests can
be repeated when request parameters are sampled from the
empirical request distribution, which leads to higher cache
hit rates compared to the Original trace. This also contributes

EuroSys ’24, April 22–25, 2024, Athens, Greece Sajal et al.

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ate6caOLng
7sSan

10−16 × 10−2 2 × 10−1 3 × 10−1

Latency(6ecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

Figure 7. Comparison of different upscaling techniques in
the MediaWiki system where the stateless application tier
is the limiting resource (details in Sec. 5.1.2), using a trace
with arrival timestamps from the Microsoft OneRF trace. The
closer the latency for an upscaling technique is to Original,
the better it is in realistic upscaling.

to the consistently lower latency of AverageRateScaling com-
pared to the Original trace. Tspan is closer to Original than
Repeat and AverageRateScaling because it does not distort
the caching effects, but it still suffers from failing to pre-
serve short term burst and overload characteristics in the trace.
We explore this effect in greater detail with synthetic traces
in Sec. 5.2. Lastly, Fold is similar to Tspan since it over-
laps bursty and non-bursty periods, resulting in less severe
burstiness.

5.1.2 Results from Stateless Setup. To explore the effects
without a cache, we next conduct experiments in the stateless
MediaWiki application using a trace with arrival timestamps
from the Microsoft OneRF trace. The results from that experi-
ment are shown in Fig. 7. Once again, TraceUpscaler closely
matches the latency characteristics of Original, but this time,
Repeat also works well. This is because repeating requests
introduces an appropriate amount of work at an appropriate
time. So surprisingly, even a simple upscaling policy that
repeats requests can work well assuming the application is
agnostic to whether a request is new or repeated (i.e., stateless
systems). As before, AverageRateScaling performs poorly
due to smoothing out the bursts, and Tspan skews the tem-
poral burst and overload patterns, both of which change the
latency characteristics.

5.2 Results using Synthetic Arrival Times
We synthetically generate traces in this section to explore
how trace characteristics and system attributes impact the
accuracy of upscaling techniques. In our investigation, we
identify two characteristics that significantly affect upscaling
techniques: (i) short-term burstiness, and (ii) request caching
in the system.

5.2.1 Impact of Burstiness. Short-term burstiness can cause
temporary strain in the system. Depending on the duration

and load of the short-term burst, it can temporarily overload
the system and impact latency, especially at high percentiles.

We generate and use two different traces with short-term
burstiness in DeathStarBench and MediaWiki, and their re-
sults are shown in Fig. 8a and Fig. 8b, respectively. AverageR-
ateScaling fails to faithfully recreate short-term burstiness in
the trace, as it averages out the bursts in the trace. This results
in lower latency than the Original trace.

Tspan distorts the temporal pattern of the trace by shrinking
the burst times in the trace. To understand this effect, Fig. 9
shows the queue length characteristics in the Original trace
and how Tspan fails to replicate that whereas TraceUpscaler
succeeds in replicating the queueing behavior. Due to the
shortening of overload periods in Tspan, the requests do not
spend much time in the queue. Subsequently, the queue length
over time is much smaller in Tspan than in Original. As a
result, latencies with Tspan are significantly lower than Origi-
nal. TraceUpscaler preserves the overload characteristics in
the trace, which translates to matching the queue length of
the Original trace. To confirm this effect, Fig. 10a shows the
results from a synthetic trace generated from a Poisson arrival
process, which is far less bursty.3 Tspan is much closer to
Original than in Fig. 8 since the burstiness is significantly
lower, but Tspan is still not as good as TraceUpscaler, be-
cause Tspan distorts the short term temporal pattern in the
Original trace, while TraceUpscaler maintains that.

The major pitfall of the Repeat policy is in failing to real-
istically represent the cache usage patterns. In systems with
a cache (Fig. 8a), the repeated requests get cached and sig-
nificantly distort latency characteristics. In stateless systems
(Fig. 8b), Repeat performs closely to Original indicating that
repeating the timestamps is a good way to maintain temporal
patterns.

Our approach, TraceUpscaler, accurately upscales times-
tamps by repeating timestamps similarly to Repeat, but it
does not reuse requests and follows the same request ordering
as in the Input trace to maintain caching behaviors, similar
to Tspan. This results in producing the best quality upscaled
traces in both stateful and stateless systems.

5.2.2 Impact of Caching. To show the impact of caching
in isolation, we create a synthetic trace with a Poisson ar-
rival process, which is far less bursty than the traces de-
scribed in Sec. 4.4. Since we want to demonstrate the impact
of caching, we use the trace in our DeathStarBench setup
(Sec. 4.3), and collect the cache hit statistics from frontend
Varnish cache to see how those are preserved in different
upscaling techniques. As shown in Fig. 10b, Repeat gets a
consistent cache hit rate of around 50% due to exactly re-
peating each request twice (due to 2⇥ upscaling). Similarly,
since AverageRateScaling randomly samples requests from
each time interval, we can see the requests getting repeated

3Even though less bursty, it still has some small bursts.

TraceUpscaler EuroSys ’24, April 22–25, 2024, Athens, Greece

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ateScaOLng
7sSan

10−3 10−2 10−1

Latency(SecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(a) Synthetic bursty trace: DeathStarBench (stateful)

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ate6caOLng
7sSan

10−16 × 10−2 2 × 10−1 3 × 10−1

Latency(6ecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(b) Synthetic bursty trace: MediaWiki (stateless)
Figure 8. Comparison of different upscaling techniques when handling bursty synthetic traces (details in Sec. 5.2.1).

0 50 100 150 200 250 300
0

100
2UigiQaO

0 50 100 150 200 250 300
0

100
TUaceUSscaOeU

0 50 100 150 200 250 300
Time (SecRQds)

0

100

1
um

be
U R
f 5

eT
ue
st
s i
Q
Q
ue
ue

TsSaQ

(a) Queue Length over Time

100 101 102

4ueue LeQgth

0

20

40

60

80

100

PU
ob
ab
LOL
ty
 (%

)
2ULgLQaO
TspaQ
TUace8pscaOeU

(b) CDF of Queue Length
Figure 9. Queue length from the Fig. 6c experiment. We can see from Fig. 9a that Tspan fails to recreate the longer queues that
develop throughout the Original trace, whereas TraceUpscaler succeeds in doing so. The shorter burst periods in Tspan results in
shorter queues in the system. This lowers the queueing times, thus distorting the latency characteristics of the upscaled trace.
Fig. 9b shows that across the distribution of queue lengths, Tspan is missing the high queue lengths seen in the Original trace and
replicated in TraceUpscaler, which explains why the latency from Tspan is consistently lower than the Original trace.

and growing in cache hit rate until the next time interval be-
gins. These phenomena explain the much lower latency from
Repeat and AverageRateScaling compared to the Original
trace, as shown in Fig. 10a. On the other hand, Tspan and
TraceUpscaler both capture the cache access pattern of the
original trace properly.

5.3 Non-integral Scaling
We now consider cases where the upscaling factor is not an
integer, i.e., fractional numbers. We evaluate two upscaling
factors (f = 1.25 and f = 1.5) in the DeathStarBench setup.
Fig. 11 shows results from a trace with arrival timestamps
from real-world traces (details in Sec. 4.4). Fig. 12 shows
results from a bursty trace with synthetic arrival timestamps.
From both sets of results along with the earlier f = 2 results,
we can see that TraceUpscaler does better than the baselines
in preserving latency properties. Of note, the Repeat approach
varies the most between scaling factors, which is due to the
fraction of repeated requests. With f = 1.25, only a quarter

of requests are repeated, so there is a smaller impact from
caching than the f = 1.5 and f = 2 cases.

5.4 Extreme Scaling
We next investigate the efficacy of our upscaling approach
in scenarios where the upscaling factor is much higher than
2. We evaluate two upscaling factors (f = 3 and f = 5) in the
DeathStarBench setup. Fig. 13 shows results from a trace with
arrival timestamps from real-world traces (details in Sec. 4.4).
Fig. 14 shows results from a bursty trace with synthetic arrival
timestamps. We can see that even when upscaling by a very
large factor, TraceUpscaler does a reasonable job of matching
latency characteristics of the Original trace, outperforming
all the baselines. However, upscaling itself is a process that
generates hypothetical traces with higher loads, so it is not
expected to be 100% realistic. Our results show that TraceUp-
scaler does a reasonable job at preserving trace characteristics
even with extreme upscaling factors of 5, but such extreme

EuroSys ’24, April 22–25, 2024, Athens, Greece Sajal et al.

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ateScaOLng
7sSan

10−3 10−2 10−1

Latency(SecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(a) Latency

0 50 100 150 200 250 300
0

25

50

75

100
2UiginaO 5HSHat AvHUagH5atHScaOing

0 50 100 150 200 250 300

7imH (SHcRnd)

0

5 2UiginaO 7UacHUSscaOHU 7sSanC
ac
hH
 H
it
5
at
H
(%

)

(b) Cache hit rate (%) over time.
Figure 10. Comparison of different upscaling techniques in the stateful DeathStarBench setup using a trace without significant
burstiness (Poisson process at a fixed rate). This result demonstrates the impact on cache access characteristics due to different
upscaling techniques (details in Sec. 5.2.2).

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ateScaOLng
7sSan

10−3 10−2 10−1

Latency(SecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(a) upscaling factor, f = 1.25

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ateScaOLng
7sSan

10−3 10−2 10−1 100

Latency(SecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(b) upscaling factor, f = 1.5
Figure 11. Comparison of different upscaling techniques when upscaling by a non-integral upscaling factor in the stateful
DeathStarBench setup using a trace with arrival timestamps from the Microsoft OneRF trace (details in Sec. 5.3).

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ateScaOLng
7sSan

10−3 10−2 10−1 100

Latency(SecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(a) upscaling factor, f = 1.25

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ateScaOLng
7sSan

10−3 10−2 10−1 100

Latency(SecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(b) upscaling factor, f = 1.5
Figure 12. Comparison of different upscaling techniques when upscaling by a non-integral upscaling factor in the stateful
DeathStarBench setup using a trace with synthetic arrival timestamps (details in Sec. 5.3).

upscaling should be treated with caution. We have not eval-
uated how TraceUpscaler performs with higher upscaling
factors, and do not make any claims about the performance
of TraceUpscaler under those scenarios.

5.5 Representing Overloads
The previous results demonstrate the efficacy of TraceUp-
scaler in upscaling traces while preserving latency character-
istics, but how does inaccurately representing latency impact
experiments and system decisions? We conduct a case study

TraceUpscaler EuroSys ’24, April 22–25, 2024, Athens, Greece

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ateScaOLng
7sSan

10−3 10−2 10−1 100

Latency(SecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(a) upscaling factor, f = 3

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ateScaOLng
7sSan

10−3 10−2 10−1

Latency(SecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(b) upscaling factor, f = 5
Figure 13. Comparison of different upscaling techniques when upscaling by an extreme upscaling factor (>2) in the stateful
DeathStarBench setup using a trace with arrival timestamps from the Microsoft OneRF trace (details in Sec. 5.4).

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ateScaOLng
7sSan

10−3 10−2 10−1 100

Latency(SecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(a) upscaling factor, f = 3

2ULgLnaO
7UaceUSscaOeU
5eSeat
AveUage5ateScaOLng
7sSan

10−3 10−2 10−1 100

Latency(SecRnds)

0

25

50

75

100

3U
Rb
ab
LOL
ty
 (%

)

(b) upscaling factor, f = 5
Figure 14. Comparison of different upscaling techniques when upscaling by an extreme upscaling factor (>2) in the stateful
DeathStarBench setup using a trace with synthetic arrival timestamps (details in Sec. 5.4).

where we select an Original trace that temporarily overloads
the system. Ideally, the upscaling should produce an upscaled
trace that illustrates the same temporary overload so that the
experimenter would conclude that the system cannot handle
the high load in the Original and upscaled traces.

Fig. 15 shows the latency over time where the load is tem-
porarily too high for our experimental DeathStarBench setup
(i.e., overloads our experimental cluster). We create the trace
for this experiment using arrival timestamps from a Microsoft
OneRF trace exhibiting temporary elevated load. We see that
only TraceUpscaler can recreate the overload in the system
just like in the Original trace. Repeat and AverageRateScaling
fail to represent the overload due to increased cache access
and suppressing short-term bursts, respectively. Tspan some-
what preserves the overload, although it has been squeezed to
a shorter duration (and occurs earlier) in the upscaled trace.
Fold exhibits an overload at the same time as the Original
trace, but the magnitude of the overload is reduced since the
folding process overlaps the temporary overload time period
with a non-overloaded period.

Due to these inaccuracies, the upscaling technique could
lead practitioners into a false sense of security. With Aver-
ageRateScaling and Repeat, one might think the system is
fully capable of handling the high load without any issue,
when in fact it can be severely overloaded. Furthermore, prac-
titioners may invest in expensive caching solutions to handle
the upscaled traces from Repeat and AverageRateScaling
when in practice there may not be as much repetition in the
workload. With Tspan and Fold, one might detect the pres-
ence of an overload, but might be misled into the magnitude
and duration of overloads. While this can lead the practitioner
toward the actual bottleneck in the system, they might still
be lacking information about correct amount of resources
needed to resolve the bottleneck. The goal of our work is to
raise awareness for potential pitfalls that may occur when
upscaling traces and introduce a new approach, TraceUp-
scaler, that does a much better job at preserving the trace
characteristics when upscaling.

6 Discussion
Evaluation on different systems: For our evaluation, we in-
tentionally upscaled traces on the same system as the Original

EuroSys ’24, April 22–25, 2024, Athens, Greece Sajal et al.

2ULgLnaO
TUaFeUSsFaOeU
5eSeat
AveUage5ateSFaOLng
TsSan
)ROd

0 100 200 300

TLme (SeFRnd)

0

5

10

15

La
te
nF
y
(S
eF
Rn
ds
)

Figure 15. Comparison of different upscaling techniques in
recreating temporary overload characteristics in the stateful
DeathStarBench setup using a trace with arrival timestamps
from the Microsoft OneRF trace (details in Sec. 5.5).

trace so that we have a baseline to compare our results against.
Our evaluation methodology is designed to eliminate con-
founding factors and focus solely on the upscaling changes
to the trace itself. In practice, traces are sometimes run on
different systems and applications than the Original system,
and handling these differences is a complementary problem.
For example, DITTO [64] addresses the problem of creating
a synthetic application to mimic an Original application. By
contrast, our focus is on how we can manipulate the traces to
increase the load in a realistic manner. This can be used to
increase the load to account for system differences such as
more hardware resources, newer hardware generations, dif-
ferent system designs/architectures, etc. The performance of
these different systems will naturally be different from the
Original system, and the goal of our work is to justify that
these performance differences are not due to peculiarities in
the upscaling process.
Preserving latency characteristics: Trace upscaling is a sub-
jective process whereby one is synthesizing a what-if scenario
to evaluate performance under a higher rate of incoming traf-
fic. In this work, we focus on preserving latency characteris-
tics (including at high tail percentiles) for open-loop systems
because latency is the primary performance metric in these
use cases and also serves as a good proxy metric for repre-
senting the behaviors of a system. There have been works that
scale traces in closed-loop systems [74], but directly trans-
ferring solutions developed for closed-loop systems for trace
upscaling in open-loop systems can lead to failure in captur-
ing tail latency characteristics [24, 58]. Arrival timestamps are
only relevant for open-loop systems, and our research shows
that the way that timestamps are upscaled can significantly
impact performance. We also consider cache hit rate, and in
practice, there may be other metrics of interest. Maintaining
multiple trace characteristics during the upscaling process is
ideal, but it may not always be possible and is beyond the
scope of our work.
High upscaling factors: Our results evaluate TraceUpscaler
across a range of upscaling factors including non-integral and

aggressive (up to 5⇥) factors, but upscaling is fundamentally
limited by the input data, and thus it cannot be expected to
always work for high upscaling factors. As an analogy, the
quality of upscaling an image or video is limited by the input
data. We recommend experimenters to use caution when using
high upscaling factors and be cognizant of the contexts of
their experiments/studies in relation to the upscaling approach
to avoid the pitfalls described in this work.
Sensitivity of TraceUpscaler to timestamp alignment: In ad-
dition to repeating timestamps, we have also experimented
with tweaking TraceUpscaler to use different types of times-
tamp offsets (e.g., fixed offsets, random offsets, randomly
between successive requests, uniformly spaced between suc-
cessive requests), but the results did not show any noticeable
difference. Our results indicate that TraceUpscaler works well
when the relative order of requests is preserved. Hence, we
opt to repeat requests at the exact same time, as it is the sim-
plest approach, preserves the original timestamps, and does
not introduce bias from the practitioner in terms of choosing
timestamp offsets. Similar effects were observed from the
performance of Repeat.
Deployment of TraceUpscaler: We have designed TraceUp-
scaler to work as an offline stand-alone tool that upscales
the collected traces to generate upscaled traces to be used
for trace replay. Practitioners can use TraceUpscaler to gen-
erate appropriately upscaled traces spanning any number of
nodes. TraceUpscaler does not need to be deployed in an
existing cluster/system since it only operates on the trace
data. However, users can easily integrate it as part of their
experimental load generator/replayer to generate upscaled
load representative of an already existing trace.

7 Conclusion
This paper conducts the first study on upscaling traces to in-
crease load in latency-sensitive open-loop applications. We
motivate the need for accurate upscaling techniques and raise
awareness for how current practices are inadequate in repre-
senting latency characteristics in upscaled traces. We address
these pitfalls by introducing a novel upscaling technique,
TraceUpscaler, that realistically upscales traces while pre-
serving temporal patterns, caching-related effects, and latency
characteristics. Through extensive evaluation, we demonstrate
how TraceUpscaler outperforms existing approaches in up-
scaling realistically. TraceUpscaler is available as an open
source tool to help the community conduct more realistic
experiments when upscaling traces.

Acknowledgments
We thank our shepherd John Wilkes and the anonymous re-
viewers who provided constructive and helpful feedback. We
also thank Avimita Chatterjee for her help with the Death-
Star setup. This research was supported in part by National
Science Foundation grant 2122155.

TraceUpscaler EuroSys ’24, April 22–25, 2024, Athens, Greece

References
[1] Ibrahim Umit Akgun, Geoff Kuenning, and Erez Zadok. 2020. Re-

animator: Versatile high-fidelity storage-system tracing and replaying.
In Proceedings of the 13th ACM International Systems and Storage
Conference. 61–74.

[2] Abubakr O Al-Abbasi, Vaneet Aggarwal, and Tian Lan. 2019. TTLoC:
Taming tail latency for erasure-coded cloud storage systems. IEEE
Transactions on Network and Service Management 16, 4 (2019), 1609–
1623.

[3] Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. 2012. An
adaptive hybrid elasticity controller for cloud infrastructures. In 2012
IEEE Network Operations and Management Symposium. IEEE, 204–
212.

[4] Eric Anderson, Mahesh Kallahalla, Mustafa Uysal, and Ram Swami-
nathan. 2004. Buttress: A Toolkit for Flexible and High Fidelity
I/O Benchmarking. In 3rd USENIX Conference on File and Storage
Technologies (FAST 04).

[5] Martin F Arlitt and Carey L Williamson. 1996. Web server work-
load characterization: The search for invariants (extended version).
Technical Report. Citeseer.

[6] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint
international conference on Measurement and Modeling of Computer
Systems. 53–64.

[7] David H Bailey. 1991. Twelve ways to fool the masses when giving
performance results on parallel computers. In Supercomputing Review.
54–55.

[8] Daniel J Barrett. 2008. MediaWiki: Wikipedia and beyond. O’Reilly
Media, Inc.

[9] Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen,
and Mor Harchol-Balter. 2018. RobinHood: Tail Latency Aware
Caching–Dynamic Reallocation from Cache-Rich to Cache-Poor. In
13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). 195–212.

[10] Shane Bergsma, Timothy Zeyl, Arik Senderovich, and J Christopher
Beck. 2021. Generating Complex, Realistic Cloud Workloads using
Recurrent Neural Networks. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles. 376–391.

[11] Vivek M Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma, Mah-
mut Taylan Kandemir, and Chita Das. 2022. Cypress: input size-
sensitive container provisioning and request scheduling for serverless
platforms. In Proceedings of the 13th Symposium on Cloud Computing.
257–272.

[12] Jaki Bhimani, Adnan Maruf, Ningfang Mi, Rajinikanth Pandurangan,
and Vijay Balakrishnan. 2020. Auto-tuning parameters for emerg-
ing multi-stream flash-based storage drives through new I/O pattern
generations. IEEE Trans. Comput. 71, 2 (2020), 309–322.

[13] Peter Bodík, Rean Griffith, Charles Sutton, Armando Fox, Michael
Jordan, and David Patterson. 2009. Statistical Machine Learning
Makes Automatic Control Practical for Internet Datacenters. In Pro-
ceedings of the 2009 Conference on Hot Topics in Cloud Computing
(HotCloud’09). USENIX Association.

[14] Peter Bodik, Rean Griffith, Charles Sutton, Armando Fox, Michael I
Jordan, and David A Patterson. 2009. Automatic exploration of data-
center performance regimes. In Proceedings of the 1st workshop on
Automated control for datacenters and clouds. 1–6.

[15] Kirill L Bogdanov, Waleed Reda, Gerald Q Maguire Jr, Dejan Kostić,
and Marco Canini. 2018. Fast and accurate load balancing for geo-
distributed storage systems. In Proceedings of the ACM Symposium
on Cloud Computing. 386–400.

[16] D. Breitgand, Z. Dubitzky, A. Epstein, O. Feder, A. Glikson, I. Shapira,
and G. Toffetti. 2014. An Adaptive Utilization Accelerator for Virtual-
ized Environments. In 2014 IEEE International Conference on Cloud

Engineering. 165–174.
[17] Binlei Cai, Rongqi Zhang, Laiping Zhao, and Keqiu Li. 2018. Less

provisioning: A fine-grained resource scaling engine for long-running
services with tail latency guarantees. In Proceedings of the 47th Inter-
national Conference on Parallel Processing. 1–11.

[18] Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Conguri
Huang, Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, et al. 2021.
Spectral temporal graph neural network for multivariate time-series
forecasting.

[19] Marcus Carvalho, Francisco Brasileiro, Raquel Lopes, Giovanni
Farias, Alessandro Fook, João Mafra, and Daniel Turull. 2017. Multi-
dimensional admission control and capacity planning for IaaS clouds
with multiple service classes. In 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE,
160–169.

[20] Marcus Carvalho, Daniel Menasce, and Francisco Brasileiro. 2015.
Prediction-Based Admission Control for IaaS Clouds with Multiple
Service Classes. In 2015 IEEE 7th International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE, 82–90.

[21] Marcus Carvalho, Daniel A Menascé, and Francisco Brasileiro. 2017.
Capacity planning for IaaS cloud providers offering multiple service
classes. Future Generation Computer Systems 77, 97–111.

[22] Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B
Gibbons, Ryan Johnson, Ippokratis Pandis, and Radu Stoica. 2011.
TPC-E vs. TPC-C: Characterizing the new TPC-E benchmark via an
I/O comparison study. ACM Sigmod Record 39, 3, 5–10.

[23] Zheyi Chen, Jia Hu, Geyong Min, Albert Y Zomaya, and Tarek El-
Ghazawi. 2019. Towards accurate prediction for high-dimensional
and highly-variable cloud workloads with deep learning. IEEE Trans-
actions on Parallel and Distributed Systems 31, 4, 923–934.

[24] Henry Cook, Miquel Moreto, Sarah Bird, Khanh Dao, David A Pat-
terson, and Krste Asanovic. 2013. A hardware evaluation of cache
partitioning to improve utilization and energy-efficiency while pre-
serving responsiveness. ACM SIGARCH Computer Architecture News
41, 3, 308–319.

[25] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Mar-
cus Fontoura, and Ricardo Bianchini. 2017. Resource central: Under-
standing and predicting workloads for improved resource management
in large cloud platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles. 153–167.

[26] Yong Cui, Ningwei Dai, Zeqi Lai, Minming Li, Zhenhua Li, Yuming
Hu, Kui Ren, and Yuchi Chen. 2019. Tailcutter: Wisely cutting tail
latency in cloud cdns under cost constraints. IEEE/ACM Transactions
on Networking 27, 4, 1612–1628.

[27] Peter Danzig, Jeff Mogul, Vern Paxson, and Mike Schwartz. 2000.
The internet traffic archive. URL: http://ita. ee. lbl. gov.

[28] Anuroop Desu, Udaya Puvvadi, Tyler Stachecki, Sagar Vishwakarma,
Sadegh Khalili, Kanad Ghose, and Bahgat G Sammakia. 2021.
Latency-Aware Dynamic Server and Cooling Capacity Provisioner
for Data Centers. In Proceedings of the ACM Symposium on Cloud
Computing. 335–349.

[29] Diego Didona and Willy Zwaenepoel. 2019. Size-aware sharding
for improving tail latencies in in-memory key-value stores. In 16th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 19). 79–94.

[30] Ludwig Dierks, Ian Kash, and Sven Seuken. 2019. On the cluster
admission problem for cloud computing. In Proceedings of the 14th
Workshop on the Economics of Networks, Systems and Computation.
1–6.

[31] Dror G Feitelson. 1996. Packing schemes for gang scheduling.
In workshop on job scheduling strategies for parallel processing.
Springer, 89–110.

EuroSys ’24, April 22–25, 2024, Athens, Greece Sajal et al.

[32] Wolfgang Fischer and Kathleen Meier-Hellstern. 1993. The Markov-
modulated Poisson process (MMPP) cookbook. Performance evalua-
tion 18, 2, 149–171.

[33] Eitan Frachtenberg, Dror G Feitelson, Juan Fernandez, and Fabrizio
Petrini. 2003. Parallel job scheduling under dynamic workloads. In
Job Scheduling Strategies for Parallel Processing: 9th International
Workshop, JSSPP 2003, Seattle, WA, USA. Revised Paper 9. Springer,
208–227.

[34] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster. 2019.
Stochastic resource allocation. In Proceedings of the 15th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments. 122–136.

[35] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. 2019. An open-source benchmark suite for microser-
vices and their hardware-software implications for cloud & edge sys-
tems. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems. 3–18.

[36] Gregory R. Ganger and Yale N. Patt. 1998. Using system-level models
to evaluate I/O subsystem designs. IEEE Trans. Comput. 47, 6, 667–
678.

[37] Jan Gasthaus, Konstantinos Benidis, Yuyang Wang, Syama Sundar
Rangapuram, David Salinas, Valentin Flunkert, and Tim Januschowski.
2019. Probabilistic forecasting with spline quantile function RNNs.
In The 22nd international conference on artificial intelligence and
statistics. PMLR, 1901–1910.

[38] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson,
and Steven Hand. 2016. Firmament: Fast, Centralized Cluster Sched-
uling at Scale. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). USENIX Association, Savan-
nah, GA, 99–115. https://www.usenix.org/conference/osdi16/

technical-sessions/presentation/gog

[39] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. Press: Predic-
tive elastic resource scaling for cloud systems. In 2010 International
Conference on Network and Service Management. IEEE, 9–16.

[40] Raúl Gracia-Tinedo, Danny Harnik, Dalit Naor, Dmitry Sotnikov,
Sivan Toledo, and Aviad Zuck. 2015. SDGen: Mimicking Datasets
for Content Generation in Storage Benchmarks. In 13th USENIX
Conference on File and Storage Technologies (FAST 15). 317–330.

[41] Pablo Graziano. 2013. Speed up your web site with Varnish. Linux
Journal 2013, 227, 4.

[42] Anubhav Guleria, J Lakshmi, and Chakri Padala. 2019. Quadd: Quan-
tifying accelerator disaggregated datacenter efficiency. In 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). IEEE,
349–357.

[43] Ubaid Ullah Hafeez, Muhammad Wajahat, and Anshul Gandhi. 2018.
Elmem: Towards an Elastic Memcached System. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 278–289.

[44] Alireza Haghdoost, Weiping He, Jerry Fredin, and David HC Du.
2017. On the Accuracy and Scalability of Intensive I/O Workload
Replay. In 15th USENIX Conference on File and Storage Technologies
(FAST 17). 315–328.

[45] Mor Harchol-Balter. 2013. Performance modeling and design of
computer systems: queueing theory in action. Cambridge University
Press.

[46] Joseph L. Hellerstein. 2010. Google Cluster Data.
http://googleresearch.blogspot.com/2010/01/google-cluster-

data.html.
[47] Roger W Hockney. 1996. The science of computer benchmarking.

SIAM.
[48] Torsten Hoefler and Roberto Belli. 2015. Scientific benchmarking

of parallel computing systems: twelve ways to tell the masses when

reporting performance results. In Proceedings of the international
conference for high performance computing, networking, storage and
analysis. 1–12.

[49] Vatche Ishakian, Raymond Sweha, Jorge Londono, and Azer
Bestavros. 2010. Colocation as a service: Strategic and operational
services for cloud colocation. In 2010 Ninth IEEE International Sym-
posium on Network Computing and Applications. IEEE, 76–83.

[50] Raj Jain. 1990. The art of computer systems performance analysis:
techniques for experimental design, measurement, simulation, and
modeling. John Wiley & Sons.

[51] Joefon Jann, Pratap Pattnaik, Hubertus Franke, Fang Wang, Joseph
Skovira, and Joseph Riordan. 1997. Modeling of workload in MPPs. In
Job Scheduling Strategies for Parallel Processing: IPPS’97 Processing
Workshop Geneva, Switzerland, April 5, 1997 Proceedings 3. Springer,
95–116.

[52] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee, and Jihong
Kim. 2014. Lifetime improvement of NAND flash-based storage
systems using dynamic program and erase scaling. In 12th {USENIX}
Conference on File and Storage Technologies ({FAST} 14). 61–74.

[53] Congfeng Jiang, Guangjie Han, Jiangbin Lin, Gangyong Jia, Weisong
Shi, and Jian Wan. 2019. Characteristics of co-allocated online ser-
vices and batch jobs in internet data centers: a case study from Alibaba
cloud. IEEE Access 7, 22495–22508.

[54] Nikolai Joukov, Timothy Wong, and Erez Zadok. 2005. Accurate and
Efficient Replaying of File System Traces. In FAST, Vol. 5. 25–25.

[55] Da-Cheng Juan, Lei Li, Huan-Kai Peng, Diana Marculescu, and Chris-
tos Faloutsos. 2014. Beyond poisson: Modeling inter-arrival time of
requests in a datacenter. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 198–209.

[56] Gueyoung Jung, Matti A Hiltunen, Kaustubh R Joshi, Richard D
Schlichting, and Calton Pu. 2010. Mistral: Dynamically managing
power, performance, and adaptation cost in cloud infrastructures. In
2010 IEEE 30th International Conference on Distributed Computing
Systems. IEEE, 62–73.

[57] Ajaykrishna Karthikeyan, Nagarajan Natarajan, Gagan Somashekar,
Lei Zhao, Ranjita Bhagwan, Rodrigo Fonseca, Tatiana Racheva, and
Yogesh Bansal. 2023. SelfTune: Tuning Cluster Managers. In 20th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 23). 1097–1114.

[58] Harshad Kasture and Daniel Sanchez. 2014. Ubik: Efficient cache
sharing with strict QoS for latency-critical workloads. ACM SIGPLAN
Notices 49, 4, 729–742.

[59] Ayaz Ali Khan, Muhammad Zakarya, Rajkumar Buyya, Rahim Khan,
Mukhtaj Khan, and Omer Rana. 2019. An energy and performance
aware consolidation technique for containerized datacenters. IEEE
Transactions on Cloud Computing 9, 4, 1305–1322.

[60] Furkan Koltuk and Ece Güran Schmidt. 2020. A Novel Method for the
Synthetic Generation of Non-IID Workloads for Cloud Data Centers.
In 2020 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 1–6.

[61] Samuel Kounev, Klaus-Dieter Lange, and Jóakim von Kistowski. 2020.
Systems Benchmarking. Springer.

[62] Miryeong Kwon, Jie Zhang, Gyuyoung Park, Wonil Choi, David
Donofrio, John Shalf, Mahmut Kandemir, and Myoungsoo Jung. 2017.
TraceTracker: Hardware/software co-evaluation for large-scale I/O
workload reconstruction. In 2017 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 87–96.

[63] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lianjie Zhu, Wen-
jun Dai, Jin Jiang, and Guangzhong Sun. 2018. Metis: Robustly tuning
tail latencies of cloud systems. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). 981–992.

[64] Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia,
Mahesh Ketkar, and Christina Delimitrou. 2023. Ditto: End-to-End
Application Cloning for Networked Cloud Services. In Proceedings of

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html

TraceUpscaler EuroSys ’24, April 22–25, 2024, Athens, Greece

the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2. 222–236.

[65] Dennis KJ Lin, Timothy W Simpson, and Wei Chen. 2001. Sampling
strategies for computer experiments: design and analysis. Interna-
tional Journal of Reliability and applications 2, 3, 209–240.

[66] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar.
2019. Generating high-fidelity, synthetic time series datasets with
doppelganger. arXiv preprint arXiv:1909.13403.

[67] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar.
2020. Using GANs for sharing networked time series data: Chal-
lenges, initial promise, and open questions. In Proceedings of the
ACM Internet Measurement Conference. 464–483.

[68] J. Liu, H. Shen, A. Sarker, and W. Chung. 2018. Leveraging De-
pendency in Scheduling and Preemption for High Throughput in
Data-Parallel Clusters. In 2018 IEEE International Conference on
Cluster Computing (CLUSTER). 359–369.

[69] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin
Bai. 2017. Imbalance in the cloud: An analysis on alibaba cluster
trace. In 2017 IEEE International Conference on Big Data (Big Data).
IEEE, 2884–2892.

[70] Uri Lublin and Dror G Feitelson. 2003. The workload on parallel
supercomputers: modeling the characteristics of rigid jobs. J. Parallel
and Distrib. Comput. 63, 11, 1105–1122.

[71] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram
Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.
2020. Themis: Fair and efficient GPU cluster scheduling. In 17th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 20). 289–304.

[72] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan,
Zili Meng, and Mohammad Alizadeh. 2019. Learning scheduling
algorithms for data processing clusters. In Proceedings of the ACM
special interest group on data communication. 270–288.

[73] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn,
Ryan Stutsman, and Robert Ricci. 2018. Taming performance vari-
ability. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). 409–425.

[74] Michael P. Mesnier, Matthew Wachs, Raja R. Sambasivan, Julio César
López-Hernández, James Hendricks, Gregory R. Ganger, and David R.
O’Hallaron. 2007. //TRACE: Parallel Trace Replay with Approxi-
mate Causal Events. In 5th USENIX Conference on File and Storage
Technologies (FAST 07). USENIX Association, San Jose, CA.

[75] Haibo Mi, Huaimin Wang, Gang Yin, Yangfan Zhou, Dianxi Shi, and
Lin Yuan. 2010. Online self-reconfiguration with performance guar-
antee for energy-efficient large-scale cloud computing data centers. In
2010 IEEE International Conference on Services Computing. IEEE,
514–521.

[76] Asit K Mishra, Joseph L Hellerstein, Walfredo Cirne, and Chita R
Das. 2010. Towards characterizing cloud backend workloads: insights
from google compute clusters. ACM SIGMETRICS Performance
Evaluation Review 37, 4, 34–41.

[77] Viyom Mittal, Shixiong Qi, Ratnadeep Bhattacharya, Xiaosu Lyu, Jun-
feng Li, Sameer G Kulkarni, Dan Li, Jinho Hwang, KK Ramakrishnan,
and Timothy Wood. 2021. Mu: an efficient, fair and responsive server-
less framework for resource-constrained edge clouds. In Proceedings
of the ACM Symposium on Cloud Computing. 168–181.

[78] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl. 2016. Efficient
Decision-Making under Uncertainty for Proactive Self-Adaptation.
In 2016 IEEE International Conference on Autonomic Computing
(ICAC). 147–156.

[79] Usama Naseer and Theophilus A Benson. 2022. Configanator: A Data-
driven Approach to Improving CDN Performance. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22). 1135–1158.

[80] Lucas Nussbaum. 2017. Testbeds support for reproducible research.
In Proceedings of the reproducibility workshop. 24–26.

[81] Vivek S Pai, Peter Druschel, and Willy Zwaenepoel. 1999. Flash:
an efficient and portable web server. In USENIX Annual Technical
Conference, General Track. 199–212.

[82] Fanny Pascual and Krzysztof Rzadca. 2018. Colocating tasks in data
centers using a side-effects performance model. European Journal of
Operational Research 268, 2, 450–462.

[83] Daniel Perez, Kin K Leung, et al. 2020. Fast-Fourier-Forecasting
Resource Utilisation in Distributed Systems. arXiv preprint
arXiv:2001.04281.

[84] Safraz Rampersaud and Daniel Grosu. 2016. Sharing-aware online
virtual machine packing in heterogeneous resource clouds. IEEE
Transactions on Parallel and Distributed Systems 28, 7, 2046–2059.

[85] Kashif Rasul, Abdul-Saboor Sheikh, Ingmar Schuster, Urs Bergmann,
and Roland Vollgraf. 2020. Multivariate probabilistic time se-
ries forecasting via conditioned normalizing flows. arXiv preprint
arXiv:2002.06103.

[86] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz,
and Michael A Kozuch. 2012. Heterogeneity and dynamicity of
clouds at scale: Google trace analysis. In Proceedings of the third
ACM symposium on cloud computing. 1–13.

[87] Ivan Rodero, Hariharasudhan Viswanathan, Eun Kyung Lee, Marc
Gamell, Dario Pompili, and Manish Parashar. 2012. Energy-efficient
thermal-aware autonomic management of virtualized HPC cloud in-
frastructure. Journal of Grid Computing 10, 3, 447–473.

[88] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data
Repository with Interactive Graph Analytics and Visualization. In
AAAI. https://networkrepository.com

[89] Anirudh Sabnis and Ramesh K Sitaraman. 2022. JEDI: model-driven
trace generation for cache simulations. In Proceedings of the 22nd
ACM Internet Measurement Conference. 679–693.

[90] Jerome Sacks, William J Welch, Toby J Mitchell, and Henry P Wynn.
1989. Design and analysis of computer experiments. Statistical
science 4, 4, 409–423.

[91] Sultan Mahmud Sajal, Rubaba Hasan, Timothy Zhu, Bhuvan Ur-
gaonkar, and Siddhartha Sen. 2021. TraceSplitter: a new paradigm for
downscaling traces. In EuroSys. 606–619.

[92] Thomas J Santner, Brian J Williams, William I Notz, and Brain J
Williams. 2003. The design and analysis of computer experiments.
Vol. 1. Springer.

[93] Stefano Sebastio, Michele Amoretti, Alberto Lluch Lafuente, and
Antonio Scala. 2018. A holistic approach for collaborative workload
execution in volunteer clouds. ACM Transactions on Modeling and
Computer Simulation (TOMACS) 28, 2, 1–27.

[94] Stefano Sebastio, Michele Amoretti, and Alberto Lluch Lafuente.
2014. A computational field framework for collaborative task exe-
cution in volunteer clouds. In Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems. 105–114.

[95] Stefano Sebastio and Giorgio Gnecco. 2018. A green policy to sched-
ule tasks in a distributed cloud. Optimization Letters 12, 7, 1535–
1551.

[96] Rajat Sen, Hsiang-Fu Yu, and Inderjit Dhillon. 2019. Think globally,
act locally: A deep neural network approach to high-dimensional time
series forecasting. arXiv preprint arXiv:1905.03806.

[97] Bumjoon Seo, Sooyong Kang, Jongmoo Choi, Jaehyuk Cha, Youjip
Won, and Sungroh Yoon. 2013. IO workload characterization revisited:
A data-mining approach. IEEE Trans. Comput. 63, 12, 3026–3038.

[98] Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Banerjee.
2020. Snf: Serverless network functions. In Proceedings of the 11th
ACM Symposium on Cloud Computing. 296–310.

[99] Alina Sîrbu and Ozalp Babaoglu. 2015. Towards data-driven auto-
nomics in data centers. In 2015 International Conference on Cloud

https://networkrepository.com

EuroSys ’24, April 22–25, 2024, Athens, Greece Sajal et al.

and Autonomic Computing. IEEE, 45–56.
[100] SNIA. 2023. SNIA IOTTA trace repository. http://iotta.snia.org/.

Accessed: Jan 10, 2023.
[101] Kui Su, Lei Xu, Cong Chen, Wenzhi Chen, and Zonghui Wang. 2015.

Affinity and conflict-aware placement of virtual machines in heteroge-
neous data centers. In 2015 IEEE Twelfth International Symposium
on Autonomous Decentralized Systems. IEEE, 289–294.

[102] Amoghavarsha Suresh and Anshul Gandhi. 2019. Using variability
as a guiding principle to reduce latency in web applications via OS
profiling. In The World Wide Web Conference. 1759–1770.

[103] Amoghavarsha Suresh and Anshul Gandhi. 2021. ServerMore: Oppor-
tunistic Execution of Serverless Functions in the Cloud. In Proceed-
ings of the ACM Symposium on Cloud Computing. 570–584.

[104] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann.
2015. C3: Cutting tail latency in cloud data stores via adaptive replica
selection. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15). 513–527.

[105] Vasily Tarasov, Santhosh Kumar, Jack Ma, Dean Hildebrand, Anna
Povzner, Geoff Kuenning, and Erez Zadok. 2012. Extracting flexible,
replayable models from large block traces. In FAST, Vol. 12. 22.

[106] Muhammad Tirmazi, Adam Barker, Nan Deng, Md Ehtesam Haque,
Zhijing Gene Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes.
2020. Borg: the Next Generation. In EuroSys’20. Heraklion, Crete.

[107] Beth Trushkowsky, Peter Bodík, Armando Fox, Michael J Franklin,
Michael I Jordan, and David A Patterson. 2011. The SCADS Director:
Scaling a Distributed Storage System Under Stringent Performance
Requirements. In FAST, Vol. 11. 163–176.

[108] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. 2009.
Wikipedia Workload Analysis for Decentralized Hosting. Elsevier
Computer Networks 53, 11 (July 2009), 1830–1845. http://www.

globule.org/publi/WWADH_comnet2009.html.
[109] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan

Goyal, and Timothy Wood. 2008. Agile Dynamic Provisioning of
Multi-Tier Internet Applications. ACM Trans. Auton. Adapt. Syst.
3, 1, Article 1 (March 2008), 39 pages. https://doi.org/10.1145/

1342171.1342172

[110] Abhishek Verma, Madhukar Korupolu, and John Wilkes. 2014. Eval-
uating job packing in warehouse-scale computing. In 2014 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
48–56.

[111] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster man-
agement at Google with Borg. In Proceedings of the Tenth European
Conference on Computer Systems. 1–17.

[112] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang,
Huiba Li, Rui Du, and Yue Cheng. 2021. FaaSNet: Scalable and
Fast Provisioning of Custom Serverless Container Runtimes at Al-
ibaba Cloud Function Compute. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). 443–457.

[113] Zhijun Wang, Huiyang Li, Zhongwei Li, Xiaocui Sun, Jia Rao, Hao
Che, and Hong Jiang. 2019. Pigeon: an effective distributed, hierarchi-
cal datacenter job scheduler. In Proceedings of the ACM symposium
on cloud computing. 246–258.

[114] Charles Weddle, Mathew Oldham, Jin Qian, An-I Andy Wang, Peter
Reiher, and Geoff Kuenning. 2007. PARAID: A gear-shifting power-
aware RAID. ACM Transactions on Storage (TOS) 3, 3, 13–es.

[115] Zev Weiss, Tyler Harter, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2013. Root: Replaying multithreaded traces with
resource-oriented ordering. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. 373–387.

[116] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet
Joglekar. 2002. An integrated experimental environment for dis-
tributed systems and networks. ACM SIGOPS Operating Systems

Review 36, SI, 255–270.
[117] Hanfei Yu, Hao Wang, Jian Li, Xu Yuan, and Seung-Jong Park. 2022.

Accelerating Serverless Computing by Harvesting Idle Resources. In
Proceedings of the ACM Web Conference 2022. 1741–1751.

[118] Ellen W Zegura, Mostafa H Ammar, Zongming Fei, and Samrat Bhat-
tacharjee. 2000. Application-layer anycasting: A server selection
architecture and use in a replicated web service. IEEE/ACM Transac-
tions on networking 8, 4 (2000), 455–466.

[119] Qi Zhang, Joseph Hellerstein, and Raouf Boutaba. 2011. Characteriz-
ing Task Usage Shapes in Google Compute Clusters. In Proceedings
of the 5th International Workshop on Large Scale Distributed Systems
and Middleware.

[120] Qi Zhang, Mohamed Faten Zhani, Raouf Boutaba, and Joseph L
Hellerstein. 2013. Harmony: Dynamic heterogeneity-aware resource
provisioning in the cloud. In 2013 IEEE 33rd International Conference
on Distributed Computing Systems. IEEE, 510–519.

[121] Qi Zhang, Mohamed Faten Zhani, Raouf Boutaba, and Joseph L
Hellerstein. 2014. Dynamic heterogeneity-aware resource provision-
ing in the cloud. IEEE transactions on cloud computing 2, 1 (2014),
14–28.

[122] Laiping Zhao, Yanan Yang, Kaixuan Zhang, Xiaobo Zhou, Tie
Qiu, Keqiu Li, and Yungang Bao. 2020. Rhythm: component-
distinguishable workload deployment in datacenters. In Proceedings
of the Fifteenth European Conference on Computer Systems. 1–17.

[123] Qing Zheng, Haopeng Chen, Yaguang Wang, Jian Zhang, and Jian-
gang Duan. 2013. Cosbench: Cloud object storage benchmark. In
Proceedings of the 4th ACM/SPEC International Conference on Per-
formance Engineering. 199–210.

[124] Ningning Zhu, Jiawu Chen, Tzi-Cker Chiueh, and Daniel Ellard. 2005.
TBBT: Scalable and accurate trace replay for file server evaluation.
ACM SIGMETRICS Performance Evaluation Review 33, 1 (2005),
392–393.

http://iotta.snia.org/
http://www.globule.org/publi/WWADH_comnet2009.html
http://www.globule.org/publi/WWADH_comnet2009.html
https://doi.org/10.1145/1342171.1342172
https://doi.org/10.1145/1342171.1342172

TraceUpscaler EuroSys ’24, April 22–25, 2024, Athens, Greece

A Artifact Appendix
A.1 Abstract
Our artifact is contained within two repositories. Our pub-
lic GitHub repository contains the TraceUpscaler code for
upscaling traces. Our public Zenodo repository contains the
scripts, configurations, and instructions for reproducing the
results from the paper. Since we cannot release the private
Microsoft OneRF trace data, we only include the synthetic
trace data used for Fig. 8a and Fig. 10a. We also provide
a video that shows how to use the TraceUpscaler tool to
upscale traces in practice.

A.2 Description & Requirements
A.2.1 How to access.

TraceUpscaler: To access TraceUpscaler, a user can use
either of the following options:
1. GitHub link:

https://github.com/smsajal/TraceUpscaler
2. Zenodo Link:

https://zenodo.org/doi/10.5281/zenodo.10042017
(DOI: 10.5281/zenodo.10042017)

A.2.2 Hardware dependencies. TraceUpscaler does not
have any specific hardware dependencies. Reproducing our
results requires using the VM types as described in Sec. 4.3.

A.2.3 Software dependencies.

TraceUpscaler: The TraceUpscaler software was devel-
oped using —
1. Java 17 (Amazon Corretto)
2. Apache Commons Lang 3.12.0
3. Apache Commons Math 3.6.1
4. Google Gson 2.7

Reproducing results: All of these were deployed in Azure
VMs running Ubuntu 18.04.

DeathStarBench:
1. Docker 24.0.2
2. libssl-dev 1.1.1
3. libz-dev 1.2.11
4. luarocks 2.4.2
5. luasocket 3.1.0-1
6. Python 3.6.9

a. multidict 5.2.0
b. yarl 1.7.2
c. typing_extensions 4.1.1
d. async_timeout 4.0.2
e. idna_ssl 1.1.0
f. charset_normalizer 3.0.1
g. aiosignal 1.2.0
h. aiohttp 3.8.5

7. Nginx 1.25.2
8. Varnish Http Cache 6.6.1

MediaWiki:
1. MediaWiki 1.35.2
2. PHP 7.4
3. libapache2-mod-php7.4
4. php7.4-mcrypt
5. php7.4-mbstring
6. php7.4-xml
7. php7.4-mysql
8. MySQL 8.0.35
9. Apache2 Server 2.4.41

10. Nginx 1.18.0

A.2.4 Benchmarks. We evaluate our work using the Death-
StarBench and MediaWiki benchmarks as described in Sec. 4.3.

A.3 Set-up
A.3.1 TraceUpscaler: Install the software dependencies
and run TraceUpscaler according to the README in either the
GitHub or Zenodo repository. The README contains details
about the parameters for running TraceUpscaler, the trace
format, etc.

A.3.2 Reproducing Results: For setting up the DeathStar-
Bench and MediaWiki setups, please follow the instructions
in the README files in their respective directories in the Zen-
odo repository. The README contains details about setting up
the systems across multiple VMs, important configurations,
scripts and instructions for running the experiments, etc.

A.4 Evaluation workflow.
A.4.1 Major Claims.
• (C1): TraceUpscaler outperforms all the other baselines in

preserving the latency characteristics of the Original trace
when upscaling. This is demonstrated by multiple experi-
ments in Sec. 5, and we provide the Bursty synthetic trace
data for reproducing the experiment in the DeathStarBench
setup (results shown in Fig. 8a).

• (C2): Tspan does badly in handling bursts in traces, and in
the absence of the bursts, it does reasonably well in upscal-
ing. AverageRateScaling does badly due to distorting the
cache access pattern present in the original trace and po-
tential failure to capture bursts. For a stateful system such
as DeathStarBench, the distorted cache access contributes
more to the failure of replicating latency characteristics.
Hence, even in the absence of bursts, AverageRateScaling
does poorly. This is shown by the experiment in Sec. 5.2.2,
and we provide the synthetic trace data for reproducing the
result shown in Fig. 10a.

A.4.2 Experiments.

Experiment (E1). : [TraceUpscaler Outperforms Other]
[10 human-minutes + 3 compute-hour]: Runs an Original
bursty synthetic trace and upscaled traces from a subtrace
of the Original trace using different upscaling techniques.
The expected result shows that TraceUpscaler most closely

https://youtu.be/fn0u6IwUwg8
https://github.com/smsajal/TraceUpscaler
https://zenodo.org/doi/10.5281/zenodo.10042017

EuroSys ’24, April 22–25, 2024, Athens, Greece Sajal et al.

matches the latency distribution of the Original trace, while
the other upscaling technique traces do not. The result plot
should match the trends in Fig. 8a.
[How to]

[Preparation] Please make sure you have setup the envi-
ronment as described in Sec. A.3.2.

[Execution] Please run the run_8a.sh shell script in the
deathstar/Archive/experiments/scripts directory. This would
start an experiment that is expected to run for around 3 hours.

[Results] To create the plot, run the python file located in
deathstar/Archive/experiments/scripts/src/plotting/plot_gen.py
with the first parameter being the address of the results direc-
tory.

Experiment (E2). : [Explanation of Shortcomings of Tspan
and AverageRateScaling] [10 human-minutes + 3 compute-
hour]: Runs an Original non-bursty synthetic trace and up-
scaled traces from a subtrace of the Original trace using dif-
ferent upscaling techniques. The expected result shows that

TraceUpscaler most closely matches the latency distribution
of the Original trace, Tspan does reasonably well, and the
other upscaling techniques do not work well. The result plot
should match the trends in Fig. 10a.
[How to]

[Preparation] Please make sure you have setup the envi-
ronment as described in Sec. A.3.2.

[Execution] Please run the run_10a.sh shell script in the
deathstar/Archive/experiments/scripts directory. This would
start an experiment that is expected to run for around 3 hours.

[Results] To create the plot, run the python file located in
deathstar/Archive/experiments/scripts/src/plotting/plot_gen.py
with the first parameter being the address of the results direc-
tory.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Model-Based Scaling (AverageRateScaling)
	2.2 Timespan Scaling (Tspan)
	2.3 Node Removal
	2.4 Trace Downscaling
	2.5 Other Works

	3 Design and Implementation
	3.1 Goals and Scope
	3.2 Key Ideas
	3.3 Our Proposed Method: TraceUpscaler

	4 Evaluation Methodology
	4.1 Metrics
	4.2 Comparison Approaches
	4.3 Applications and Cluster Hardware
	4.4 Traces

	5 Experimental Results
	5.1 Results using Arrival Times from Production Traces
	5.2 Results using Synthetic Arrival Times
	5.3 Non-integral Scaling
	5.4 Extreme Scaling
	5.5 Representing Overloads

	6 Discussion
	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow.

